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Abstract
Cryptocurrencies have provided a promising infras-

tructure for pseudonymous online payments. However,
low throughput has significantly hindered the scalability
and usability of cryptocurrency systems for increasing
numbers of users and transactions. Another obstacle to
achieving scalability is the requirement for every node
to duplicate the communication, storage, and state repre-
sentation of the entire network.

In this paper, we introduce the Asynchronous Con-
sensus Zones, which scales blockchain system linearly
without compromising decentralization or security. We
achieve this by running multiple independent and paral-
lel instances of single-chain consensus systems termed
as zones. The consensus happens independently within
each zone with minimized communication, which parti-
tions the workload of the entire network and ensures a
moderate burden for each individual node as the network
grows. We propose eventual atomicity to ensure trans-
action atomicity across zones, which achieves the effi-
cient completion of transactions without the overhead of
a two-phase commit protocol. Additionally, we propose
Chu-ko-nu mining to ensure the effective mining power
in each zone to be at the same level of the entire network,
making an attack on any individual zone as hard as that
on the full network. Our experimental results show the
effectiveness of our work: on a testbed including 1,200
virtual machines worldwide to support 48,000 nodes, our
system delivers 1,000× throughput and 2,000× capacity
over the Bitcoin and Ethereum networks.

1 Introduction

Since the peer-to-peer electronic cash system [37] was
published in 2008, decentralized consensus systems con-
tinuously enlarged its community and exerted bigger im-
pacts on our society. However, low transaction con-
firming throughput measured as transaction-per-second

(TPS) has significantly hindered the usability of such
systems with increased amounts of users and transac-
tions. Besides network latency, the root cause of the
throughput issue is the sequential nature of block cre-
ation. In a blockchain, blocks are created sequentially
with sufficient propagation time in between, which yields
a fixed low TPS1 regardless of how many full nodes and
miners participate in the network.

Additionally, a consensus system can not scale out
when every full node needs to duplicate the communi-
cation, storage, and state representation of the entire net-
work, which are cases of Bitcoin and Ethereum. Even if
a high throughput is achieved, workloads requiring fast
communication, adequate storage and sufficient comput-
ing power will soon set a high barrier for full nodes to
participate in, which in turn dramatically hinders decen-
tralization in practice. Therefore, a scalable blockchain
system needs to consider the scalability of its consen-
sus protocol with the resource usage of communication,
storage, computation and memory for state representa-
tion while preserving decentralization and security. Pre-
viously, the Ethereum community has investigated shard-
ing in blockchain systems [39] (see Section 8 for more
discussions). Motivation of the proposed method echoes
many considerations discussed in this article regarding
duplicated workload, low entry barrier, importance of ef-
ficient cross-shard transaction handling, and the security
issue of diluted mining power.

A scalable Blockchain system is desired so that fu-
ture applications at the Internet scale can be supported.
VisaNet payment and clearance [46] takes roughly 4k
TPS on average. Alipay mobile payment exceeded 256k
TPS at peak traffic [3] in 2017. Rapid growth of DApps
on blockchain [44] also exhibits huge demand for scal-
able Blockchain systems with high throughput and large
capacity to support games and decentralized exchanges.

1Roughly 7 TPS for Bitcoin with 1MB block and 10-minutes in-
tervals; and 15 TPS for Ethereum with roughly 32KB block and 15-
seconds intervals.
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Those demands motivate our work.

Asynchronous Consensus Zones is the main idea in this
paper, which aims to design a scalable blockchain sys-
tem without weakening decentralization or security. We
scale out blockchain systems by partitioning and han-
dling workloads in multiple independent and parallel in-
stances, or Consensus Zones. The state of the entire net-
work are partitioned by zones, and each zone is respon-
sible for its own piece. The core data structures, such as
blocks and transactions, are zone-specific, and are repli-
cated and stored only within their own zones. Mining
competition, chain growth, and transaction confirmation
are carried out separately and asynchronously in each
zone.

Consensus zones exhibit natural linear scalability for
capacity by having the amount of storage, computation
power, and state-representing memory proportional to
the total number of zones. There are two major chal-
lenges to design such a blockchain system: (1) high
throughput should be ensured in a scalable fashion when
handling cross-zone transactions; (2) security should be
reinforced as honest mining power diluted due to inde-
pendent growths of chains in individual zones.

Cross-Zone Atomicity is crucial to the correctness and
robustness of the blockchain system. In consensus zones,
a transaction might involve multiple parties in different
zones. It is challenging since state-updating of those par-
ties occurs independently in different zones. Efficient
handling of such cases is the key to the throughput scala-
bility and the performance of the entire system. We pro-
pose Eventual Atomicity to ensure transaction atomicity
across zones. With this technique, all operations will
complete and will eventually achieve the correct end-
state instead of serializing transactions like the two-phase
commit protocol [27] does. Eventual atomicity allows in-
terleaving of transactions in an asynchronous and lock-
free manner to keep zones concurrent and fully utilized.
Eventual atomicity decouples a cross-zone transaction
into multiple steps (relay transactions), each involves a
single zone. Those steps are relayed and executed across
zones by miners. Our system doesn’t guarantee miners
to handle all relay transactions, just like transaction han-
dling is not guaranteed in Bitcoin or Ethereum. Instead,
miners in each zone are incentivized to complete each
step by handling relay transaction and ensuring the atom-
icity eventually.

Effective Mining Power Amplification is introduced to
reinforce the security for consensus zones. A blockchain
system relies on the majority of mining power to out-
pace attackers. However, when the mining power is dis-
tributed to different zones, an attacker can gather the

mining power toward a single zone and may easily ex-
ceed the 51% threshold within that zone. To address this
problem, we propose Chu-ko-nu2 Mining to ensure the
per-zone security. With Chu-ko-nu mining, a miner is
allowed to create multiple blocks in different zones by
solving one proof-of-work puzzle. This greatly amplifies
the effective mining power of honest miners who evenly
distribute the mining power across zones. Such amplifi-
cations, on the other hand, doesn’t apply to attackers be-
cause the amplified mining power is forced to be evenly
distributed to multiple zones, which can not be gathered
towards a single zone. In this way, the effective mining
power in each zone will be at the same level of total phys-
ical mining power in the entire network, which makes at-
tacking an individual zone as hard as attacking the entire
network.

Contributions in this paper include the following:

1. A scale-out blockchain system that divides work-
loads of communication, computation, storage, and
memory for state representation into independent
and parallel zones. Our system keeps the burden of
individual full nodes at a low level as the network
grows.

2. An eventual atomicity technique for efficient han-
dling of cross-zone transactions, ensuring correct-
ness and robustness in zones that work asyn-
chronously.

3. Chu-ko-nu mining, a novel proof-of-work scheme,
to prevent lowering the attack bar when the mining
power is dispersed into multiple zones.

To demonstrate the effectiveness of our system, we
carry out a set of experiments on a testbed includ-
ing 1,200 virtual machines worldwide with the histor-
ical data of ERC20 payments from the Ethereum net-
work. In these experiments, our system has delivered
1,000× throughput and 2,000× capacity over Bitcoin
and Ethereum networks.

2 Background

We now provide necessary background of this work in-
cluding details of blockchain systems and a high-level
comparison of two consensus mechanisms, i.e., Proof-
of-Work (PoW) and Proof-of-Stake (PoS). Lastly, we
discuss the differences between the UTXO and Ac-
count/Balance transaction models.

2Chu-ko-nu is a repeating crossbow shooting multiple arrows at
once. It was invented by Zhuge Liang during the warring states pe-
riod in ancient China.
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2.1 Blockchain System
A blockchain system such as Bitcoin [37] and Ethereum
[6] contains many compute nodes as miners and full
nodes. Transactions are incremental updates of the state,
which are confirmed and carried by blocks. Blocks are
created by miners. The verification of a block is in-
volved with a mathematical puzzle (also called the proof-
of-work, PoW), which is moderately hard on the request
side but easy to check for the network. Miners compete
with each other, and the first miner who solves the puz-
zle will be given rewards and the one-time privilege for
creating a new block. A newly-created block has to be
sufficiently propagated among miners and full nodes be-
fore the next block can be created. Due to the network
delay, other miners may still work on different blocks,
and diverge the chain into different paths when append-
ing blocks on the chain. The divergence of the chain is
called a fork, and the blocks not in the main chain are
called orphaned blocks. Enlarging the block size (higher
propagation latency) or lessening the creation interval
may lead to more orphaned blocks, and even prevent the
system from converging to a single longest chain in ex-
treme circumstances (e.g. orphan rate > 50%). We will
provide detailed discussions on related studies in Section
8.

We summarize other aspects that affect the overall per-
formance of a blockchain system with the consensus pro-
tocol as below:

• Consensus: The sequential nature of block creation
and confirmation required by the consensus proto-
col is the major challenge of scalability. This is
bound by the throughput as analyzed above.

• Communication: Information, including uncon-
firmed transactions and newly-created blocks, needs
to be exchanged between all miners and full nodes.
It is bound by the local bandwidth.

• Storage: All accepted blocks of the chain need to be
stored persistently in every miners and full nodes.
These are bound by the local disk space.

• Representation: The global states of the entire net-
work, e.g. per-address balance and smart con-
tract state, are maintained by every miners and full
nodes. These are bound by the size of the host mem-
ory.

A scalable design of blockchain has to take all four as-
pects into consideration.

2.2 PoW and PoS
As discussed above, PoW in predominant cryptocurren-
cies, including Bitcoin and Ethereum, requires miners to

do a compute-intensive verification to maintain the con-
sensus on each block. It yields huge electricity consump-
tion, but it sets fundamental real-world values to the cor-
responding cryptocurrencies.

In contrast, PoS selects the creator of a block in a
deterministic fashion that usually depends on the stake
(wealth) of a node. Existing PoS systems adopt different
methods to produce the randomness in the leader election
to ensure decentralization and security [22, 7, 45, 18].
Although PoW is used in this paper, our technique is
orthogonal to the actual consensus mechanism used per
zone. Please refer to Section 8 for detailed discussions
on state-of-the-art research of PoW and PoS.

2.3 UTXO and Account/Balance
There are two major types of transaction models in cryp-
tocurrencies. The former is the Unspent Transaction Out-
put (UTXO) model, where a transaction spends outputs
from previous transactions and generates new outputs
that can be spent in future transactions. In a UTXO-
based system, a user or an account may have multiple
UTXOs. When a user wants to spend money, she uses
one or more UTXOs to cover the cost and may get some
changes back as new UTXOs. This model is used by
Bitcoin and many blockchain systems [11, 32, 23]. The
latter is the account/balance model, which is similar to a
bank account. Before approving a transaction, the bank
needs to check if the account balance can cover the cost.
This model is used by Ethereum and it is thought to be
better than UTXO for supporting smart contracts [6].

Our system uses the account/balance model due to its
simplicity since a transaction with an arbitrary amount
can be performed with one sending account and one
receiving account (instead of multiple UTXOs on both
sides). Additionally, the balance can be extended to more
complex state to support programable application logic.
Another important benefit offered by the account/balance
model is allowing transactions to carry incremental up-
dates of states, as oppose to the UTXO transactions that
can only carry full states. This makes a significant sav-
ings of transaction size for applications like non-fungible
tokens (e.g., Ethereum’s ERC-721 token), in which the
state is a set of unique identifiers.

3 System Design

Before diving into details, let’s first check the high-level
architecture of our system for handling a payment that
involves two users from different zones, i.e., zones A and
B as shown in Figure 1. In that case, the withdraw oper-
ation ρ that only involves the state in zone A is handled
by a miner in zone A. If the account balance satisfies
the cost of this withdraw operation, the corresponding
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Op ρ in TX φ
… …

Zone A

Op ϕ in TX φ
…

Zone B

Transaction Relaying

Block t+0 Block t+1 Block t+2 Block t+3

Block r+0 Block r+4Block r+1 Block r+2 Block r+3

Figure 1: Message passing by relaying transaction across
asynchronous zones.

block t + 1 carrying the transaction (initiative transac-
tion) will be created by the miner and only be appended
to the chain of zone A. After that, a relay transaction
carrying the deposit operation φ is composed in zone A
and forwarded to zone B. The deposit operation φ that
only involves the state in zone B can always be executed,
regardless of the balance of the target account in zone B.
Once the relay transaction is picked up by another miner
in zone B, operation φ will be executed, concluding the
complete of the payment transaction.

3.1 Partitioning and Naming

In our system, an account, or a user, is represented by its
address, i.e., a fix-sized hash value of its public key. Our
system uniformly partitions the space of user addresses
into 2k zones in a fixed and deterministic way: a zone is
identified by its sharding scale k and zone index s (s ∈
{0,1, . . . ,2k−1}).

Given a sharding scale k, the zone index of a user can
be easily derived, i.e., by calculating the first k bits of
its address. The zone index of an initiative transaction
is determined by the payer’s address, and the zone in-
dex of a relay transaction is determined by the payee’s
address. A block is specified with the 〈s,k,h〉, with h be-
ing its height of the chain. Sharding scale k defines the
number of zones and in turn determines the throughput
and the capability of the entire network. The following
discussion assumes a fixed k for simplicity.

In our system, full nodes join swarms to broadcast new
transactions and receive blocks from other full nodes, in-
cluding miners. A swarm is a group of nodes that par-
ticipate in the replication of the same data set. In Bit-
coin or Ethereum, there is only one swarm and every full
node replicates the same data set, including all blocks
and transactions. In our system, multiple swarms are es-
tablished for different purposes. A distributed hash table
(DHT) is employed for swarm addressing and peer dis-
covery. Details are described in section 7.

Our system has a global swarm joined by all full nodes
for replicating the minimum common information of all
zones. On the other hand, most communication occurs in
zone-specific swarms with full nodes belonging to spe-

cific zones only. In each swarm, the participating full
nodes are sparsely connected, and use the gossip protocol
to broadcast messages. Similar to zones, zone-specific
swarms are also identified by zone index s and sharding
scale k.

3.2 Isolated Intra-Zone Workload

A full node, or a miner, will have a persistent identi-
fier that is initialized randomly; it determines a particular
zone the node should work on. With address space par-
titioning, a blockchain is established within each zone
independently. A miner only competes on PoW with
other miners in the same zone and confirms transactions
from its own zone. Full nodes will ignore any blocks
or transactions received that do not belong to their zone,
although those are unlikely to be received.

Therefore, the computation and storage related to
transaction validation and chain formation are indepen-
dent and isolated between zones: (1) a miner is only re-
sponsible for mining transactions that happen within the
zone in which it has chosen to participate, and (2) any
full node only records the chain for balances of users in
its own zone. As the entire network grows, more zones
will be created, ensuring that the burden of computation
and storage on an individual node is always at a reason-
able level. A low barrier of joining and operating in the
network for a full node is essential to maintaining decen-
tralization and robustness of a blockchain system.

3.3 Minimized Cross-Zone Overhead

In a blockchain system, most communication is for repli-
cating unconfirmed transactions and for broadcasting
new blocks carrying confirmed ones. In our system, such
communication is performed only among nodes within
the zone. Our system maintains a distributed hash table
(DHT) on each node. After getting the zone index s of
an unconfirmed transaction or a forwarding block, our
system selects out nodes having the same zone index as
s based on the local DHT routing table, and it sends the
transaction and block to these nodes following the gossip
protocol [12] as is used in Bitcoin and Ethereum. This
isolates most communication within each zone.

For cross-zone transactions, our system sends re-
lay transactions only to destination zones instead of
the whole network. Additionally, minimized data for
chain forming excluding actual confirmed transactions
are replicated across all zones. We will discuss this in
the next section.
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4 Efficient Cross-Zone Atomicity

We divide a block into two parts: a chaining-block
for the chain formation and the PoW verification, and
a transaction-block carrying actual confirmed transac-
tions. As shown in Figure 2, a chaining-block, e.g.,
Θa, carries block metadata, including a PoW nonce, a
pointer to the precursor block, a Merkle tree [34] root
of the list of confirmed transactions, etc. In addition, a
chaining-block provides the Merkle tree root for the list
of all relay transactions originated from initiative trans-
actions in this block, which is used for the validation of
relay transactions in other zones. A transaction-block,
e.g., Φa, that records the transaction list (same as those
in existing systems like Bitcoin and Ethereum) is only
replicated and stored by full nodes in the zone. Com-
pared to the hundreds of kilo-bytes used for transactions,
a chaining-block has a fix-sized data structure that takes
roughly 100 bytes, introducing negligible overhead for
both communication and storage.

For an initiative transaction with a withdraw operation
ρ from payer a and a deposit operation φ to payee b, it
can be immediately handled within the zone if a and b
belong to the same zone. When a and b are from differ-
ent zones, we introduce a dual-stage transaction handling
mechanism by deriving and forwarding a relay transac-
tion that carries the deposit operation to its destination
zone. Figure 2 illustrates the process of cross-zone pay-
ment with the data structures processed.

Transaction Validation and Forwarding at Zone A

1. An unconfirmed transaction 〈ρ,a,φ ,b〉 is picked up
by a miner in the payer a’s zone, when the miner
constructs a new block.

2. The initiative transaction is validated if the balance
of a is not less than the transfer amount. If the bal-
ance is insufficient, the transaction will be marked
as invalid, and be concluded and embedded in the
block.

3. Otherwise, a chaining-block Θa and a transaction-
block Φa are constructed. Φa has a list of validated
transactions including the one from a to b.

4. The miner works on a PoW puzzle specific to the
list of all confirmed transactions.

5. After the PoW puzzle is solved, immediately the
chaining-block Θa is broadcast in the global swarm
and the transaction block Φa is broadcast in a’s
zone-specific swarm.

6. Intra-zone transactions are executed and concluded.

7. The withdraw operations ρ in all cross-zone trans-
actions are then executed.

8. Each cross-zone transaction derives an outbound re-
lay transaction ψ := 〈φ ,b,γ〉, which will be sent to
the destination zone, i.e., the payee b’s zone B.

Relay Transaction Handling at Zone B

1. An inbound relay transaction ψ := 〈φ ,b,γ〉 is
picked up by a miner in payee b’s zone when con-
structing a new block.

2. The miner verifies the inbound relay transaction
against its originate block Θa. Skip this if invalid.

3. The miner constructed a new chaining-block Θb and
a new transaction-block Φb. Θb including the in-
bound relay transaction 〈φ ,b,γ〉.

4. The block Φb will be broadcast in b’s zone after the
PoW puzzle is solved.

5. The deposit operation φ is executed, concluding the
transaction 〈ρ,a,φ ,b〉.

In Figure 2, the transaction-blocks are only propagated
and stored in their own zone, i.e., Φa and Φb in zone A
and zone B, respectively. The relay transactions, e.g., ψ ,
are generated at the originate zone, i.e., zone A, and only
sent to the destination zone, i.e., zone B. The chaining-
blocks, e.g., Θa and Θb, each of which has roughly 100
bytes, are replicated to all zones.

4.1 Verification

Transaction Verification

When a miner in zone B receives a relay transaction from
zone A, it needs to verify this transaction in order to avoid
the attack from a malicious peer. As shown in Figure 2, a
forwarded transaction ψ := 〈φ ,b,γ〉 includes verification
data γ , where

γ := 〈s,k, t, p,{hq}〉, (1)

position pointer p denotes the position in the list of out-
bound relay transactions in its originate block, Merkle
tree path {hq} refers to hash values of all sibling nodes
on the path from Merkle tree root to its entry; and zone
index s, sharding scale k, and height t are used to identify
its originate block.

The Merkle tree root will be recalculated using the
Merkle tree path {hq} and the transaction 〈φ ,b〉 itself.
It is verified if the recalculated Merkle tree root matches
with that in its originate block Θa and Θa is on the chain
in zone A. Note that the relationships to siblings (left or
right) is not encoded in {hq}, which is inferred from p
instead.
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Figure 2: Data structure of the chaining-blocks and transaction-blocks. Outbound relay transactions are derived from
confirmed transactions and forwarded with verification data (hq and etc.)

Block Verification

On receiving a block (pair of chaining-block and
transaction-block) broadcasted by a miner, a full node
needs to verify the block to defend malicious miners. In
our system, a full node verifies three types of transac-
tions. As shown in Figure 2, they are:

1. Confirmed initiative transactions in its own zone.
2. Inbound relay transactions previously forwarded

from other zones.
3. Outbound relay transactions forwarded to other

zones.

To save the storage space of full nodes, transactions
of the first two types are actually embedded in the
transaction-block; while outbound relay transactions are
not, since they can be derived from the list of confirmed
initiative transactions.

The confirmed transactions are verified against cur-
rent user states. Any block containing illegal transac-
tions or mismatched pairs of initiative/relay transactions
will be rejected. The inbound relay transactions are veri-
fied against their originate blocks as described in section
4.1. This process also checks if all outbound relay trans-
actions are created as expected, by double checking the
Merkle tree root of the list of all outbound relay transac-
tions. It is assumed that outbound relay transactions are
ordered and precisely consistent with the order of con-
firmed initiative transactions. Note that only the Merkle
tree root is embedded in the chaining-block, instead of
the outbound relay transactions themselves.

4.2 Eventual Atomicity
A payment transaction involving withdraw and deposit
operations, should be atomic to ensure correctness of
the global ledger. In existing blockchain systems, e.g.,
RSCoin [11] and OmniLedger [23], the variants of two-
phase commit (2PC) mechanism [36] are used to ensure
the atomicity, with the known lock/unlock overhead.

In our system, for a cross-zone transaction, we allow
the withdraw operation to execute first, interleaving with
other transactions then the corresponding deposit oper-
ation to be settled later. What is achieved is that once
the withdraw operation is confirmed, the deposit opera-
tion will be executed eventually. We call such an atom-
icity, Eventual Atomicity. We optimistically assume
withdraw operations, carried by relay transactions, will
be eventually picked as long as there are well-behaved
miners that want to earn transaction fees. What our de-
sign ensures is that relay transactions will not be discrim-
inated by sufficiently incentivizing with a fee split.

Theoretically, there could be bad-behaved miners cre-
ating empty blocks without confirming any transaction,
neither for normal transactions and relay ones. In that
case, throughput will be harmed and eventual atomicity
will not be fulfilled until a well-behaved miner eventually
gains the opportunity for block creation. In the history of
the Bitcoin and Ethereum networks, creation of empty
blocks is possible but rare [17, 33].

By default, the newly-derived outbound relay trans-
actions are forwarded to their destination zones by
the miner, who created the chaining-block and the
transaction-block in the originate zone. Once the re-
lay transaction gets replicated in the destination zone, it
will never expire before being picked up by a miner, un-
less its initiative transaction is invalidated, e.g., being or-
phaned block due to the chain fork (we will discuss this
case later). If a relay transaction is accidentally dropped,
which is extremely unlikely, it can be reconstructed by
any full node in the originate zone based on its originate
block on the chain. No additional verification or con-
sensus is required to restart the replication of the recon-
structed relay transaction.

In the existing blockchain system, a payment transac-
tion will be visible to its payee once it is packed in a
block on the chain (first confirm). It will be secured after
n− 1 successive blocks appended (n-th confirm, n = 6
in Bitcoin and 12 in Ethereum). In contrast, a cross-
zone payment transaction in our system will be visible to

100    16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



the payee, once its relay transaction is forwarded to the
payee’s zone, and its originate block becomes available.
With the eventual atomicity, the transaction is considered
as eventually secured, once its initiative transaction gets
n-confirmed, and the relay transaction gets a first con-
firm. Since miners of these two zones are working in-
dependently, n-confirmation of the initiative transaction
is overlapped with the forwarding and first confirmation
of the relay transaction. Thus, eventual atomicity intro-
duces no additional delay, which is also demonstrated in
our experiments in section 7.3. Theoretically, additional
latency may occur, when the relay transaction waits too
long to be picked up by a miner. This can take even
longer than n-confirmation of its initiative transaction.

4.3 Fork Resolution
In a proof-of-work consensus system, it is possible for
different miners to create two, or even more, blocks at
the height, which are forks. Eventually, after a successful
fork resolution, only one block will be accepted among
those and the rest will be discarded as orphan blocks.
The longest-chain rule [37] is proposed to resolve forks
in Bitcoin and GHOST protocol [42] is also employed in
Ethereum. We use GHOST protocol in consensus zones,
which is reliable even when the fork rate is high.

In each consensus zone, fork resolution is performed
independently in exactly the same way as previous
single-chain consensus systems. A block can be one of
the three states:

1. Available: no fork, or the block is on the winning
path.

2. Unsolved: the block is on one of the equally com-
peting paths.

3. Orphan: the block is on the losing path.

Fork resolution is a continuous procedure as more blocks
being created and appended. A previously available
block may lately become orphan or unsolved, and vice
versa.

With eventual atomicity, the consequence of fork res-
olution in one zone may affect the validity of relay trans-
actions forwarded and confirmed in another zone. Ver-
ification of relay transaction relies on the proof related
to its originate block. If the originate block is no longer
available after fork resolution, the proof will be invali-
dated and in turn invalidates all relay transactions that
originated from it.

Pre-Confirmed

An unconfirmed relay transaction will not be considered
in new block creation until its originate block is in avail-
able state. Relay transactions will stay in the uncon-

Block a Orphan 
Blocks

Available 
Blocks

Block b Block c

Relay Transaction x

Block d

λ blocks

…

Zone A

Zone B

… …

Outbound Relay Transaction from y

Figure 3: Relay transaction invalidated due to orphaned
initiative block after fork resolution.

firmed transaction set regardless of the validity of their
originate block and wait for originate blocks become
available.

Post-Confirmed

As shown in figure 3 Zone A, a block a previously avail-
able lately become unsolved/orphan, and unfortunately,
a relay transaction x originated from it has already been
confirmed and embedded in a block b in zone B. In that
case, block b will not be invalidated and just the relay
transaction x will be invalidated. While, the ledger state
in zone b is required to be rebuilt by executing all trans-
actions of all historical blocks since the genesis block,
skipping all invalidated relay transactions including x. In
practice, state rebuilding is accelerated by state check-
points so that only operations of recent blocks are re-
executed.

Implicate Subsequent Transactions in Invalidating

After relay transaction x is invalidated, an even worse
scenario is that a subsequent confirmed transaction be-
come invalidated because it relies on the updated state by
the relay transaction x. For example in Figure 3, the relay
transaction x deposit u tokens in block b and the balance
becomes u0 + u. Lately a transaction y is confirmed in
block c and it withdrawn v tokens (u0 < v≤ u0 +u).

If relay transaction x is invalidated and transaction y is
a cross-zone transaction, block c will be invalidated and
all subsequent blocks after that will be discarded as well.
To avoid such a case, a miner will validate candidate
transactions against a special state by delaying execution
of inbound relay transaction for λ blocks. Thus, trans-
action y will be not be confirmed until block d, which
makes such case unlikely since block a already received
at least λ confirmations.

Let the latest block be b, the normal state S is built
by executing all operations in all transactions from the
genesis block to block b. For miners, an additional state
Sλ is built by executing from the genesis block to block
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b−λ and then execute all operations except inbound re-
lay transactions of blocks b− λ + 1 to b. An uncon-
firmed cross-zone transaction must be validated against
both states S and Sλ to be considered as candidate when
creating block b+1.

5 Defense Per-Zone Security

In the early stage, miners are individuals and mining
power is fragmented. The randomness of voluntary zone
assignments based on the local identifier is safe, when no
individual miner controls more than 50% mining power
in any zone. Professional mining facilities will gradually
dominate the mining power by owning great amount of
mining power or aggregating mining power from individ-
ual miners, which delivers steady, frequent and divided
mining rewards [28]. In our system with n zones, a ratio-
nal mining facility will ideally distribute its total mining
power in different zones to maximize the rewards (bias
to zones with lower mining difficulty). Eventually, this
makes the mining power of the entire network H con-
verge to be evenly distributed across zones. Thus, per-
zone mining power will be H/n. When a malicious min-
ing facility gathers all its mining power T focuses on a
single zone, the attack will success if T > H/n× 50%,
which will be unacceptably low when with a large n.

To address this issue, we introduce a Chu-ko-nu min-
ing mechanism that allows and encourages a miner to
create multiple blocks in different zones with one PoW
solution. This ensures the effective mining power in each
zone is nearly equal to the total physical mining power
in the entire network, raising the attack bar in each zone
close to 50% when most miners participate in Chu-ko-
nu mining. Also, Chu-ko-nu mining can save energy
consumed in solving PoW by making it more produc-
tive of block creation. Like PoW mechanism itself, se-
curity based on Chu-ko-nu mining is driven by incentive.

Merkle Tree Path {hj}

Hash of Previous Chaining-Block

Timestamp

PoW Target

Version

Batch Sharding Scale kb

Sharding Scale ki

Hash of Previous Chaining-Block

Timestamp

Merkle Root (Confirmed TX)

Merkle Root (Outbound Relay TX)

PoW Target

Version

PoW Nonce 𝜂i 

Base Shard Index b of the Batch

Size of the Batch n

Batch-Chaining-Block Chaining-Block

A A

B

C

Shard Index si
Sharding Scale k
Shard Index s

Merkle Root (Confirmed TX)

Merkle Root (Outbound Relay TX)

Batch PoW Nonce 𝜂b

Figure 4: Comparison of a batch-chaining-block and a
chaining-block

It will be taken down if the attacker controls more than
50% physical mining power of the entire network, which
is also the case of PoW mechanism. While, the defense
is all miners that acknowledge the incentive.

5.1 Chu-ko-nu Mining
Chu-ko-nu mining allows a miner use a single PoW so-
lution to create multiple blocks at different zones simul-
taneously, but no more than one block per-zone. In such
a case, a batch-chaining-block in Figure 4 will replace
the chaining-block, as shown in Figure 2, and get repli-
cated among all zones. Miners are allowed to perform
Chu-ko-nu mining for n zones starting from zone index
b or all zones (n = 2k,b = 0) based on their capacities of
IT resources.

A miner will perform the transaction validation for all
involved n zones and collect n chaining-headers Ai, i.e.,
part A in Figure 4. Without Chu-ko-nu mining, as in
Bitcoin or Ethereum, a miner is required to find n nonce
ηi (i ∈ [0,n−1]) that each fulfills

hash(〈Ai,ηi〉)< τ, (2)

in which τ denotes the PoW target (a big integer) [37] de-
termining the mining difficulty, and the < operator takes
place by regarding the hash value as a big integer. With
Chu-ko-nu mining, a miner only needs to find a single
nonce ηb that fulfills

hash(〈h0,C,ηb〉)< τ, (3)

in which C is the configuration of the batch (part C in
Figure 4) and h0 denotes the root of Merkle tree ϒb over
the list of all chaining-headers in this batch:

〈A0,A1, . . . ,An−1〉 . (4)

Note that we assume the PoW targets are the same in all
involved zones. We will discuss the case if they are not
in the next section.

Once ηb is found, zone-specific batch-chaining-blocks
will be composed and sent to corresponding zones. As
illustrated in Figure 4, for each zone, a batch-chaining-
block carries a chaining-header (A), its Merkle tree path
{h j} (B), batch configuration (C), and the found batch
PoW nonce ηb, which are the minimum pieces of infor-
mation for recalculating equation 3 and for verifying the
PoW. Our system doesn’t explicitly record the relation-
ships to siblings (left or right) in the Merkle tree path
{h j}. Instead, relationships are inferred from bits of the
offset in the batch list (s− b). By this means, the zone
index s is coupled with the offset in the block list (Equa-
tion 4) in the batch, which guarantees that a miner is able
to create only one block for each involved zone in one
batch.
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In each zone, full nodes, as well as miners, treat batch-
chaining-blocks and chaining-blocks equally when ac-
cepting a new block. They follow the same approach
to detect and resolve forks as described in Section 4.3.
A chain of a zone is allowed to contain batch-chaining-
blocks and chaining-blocks at different block heights.

Chu-ko-nu mining shares similar spirit with merged
mining [4] in practices by allowing creating multiple
blocks with a single PoW solution. Merged mining is de-
signed for different motivation and scenario, which is for
protecting blockchains with small mining power. Chu-
ko-nu mining is designed for reinforcing mining power
distribution across zones with amplified effective mining
power. Chu-ko-nu mining works with multiple chains
with equal role and equal mining power, instead of a
parent chain and an auxiliary chain. Chu-ko-nu mining
also enforce one-block per-zone which leads to a differ-
ent data structure and implementation.

5.2 Independent Validation in Zones

Chu-ko-nu mining solves the PoW for chaining-headers
in batch, while the batch-chaining-block with solved
nonce are zone-specific and sent separately. Per-zone
batch-chaining-blocks will be validated and accepted in-
dependently in each zone. One block can be orphaned or
even invalidated, but this will not affect the validation or
the acceptance of others.

Independent validation also allows efficient handling
of mixed PoW targets of zones in one batch. The con-
struction of batch-chaining-blocks in this case is the
same as described in section 5.1, but it allows different
values of PoW targets in each chaining-header. While, in
probing the batch PoW nonce ηb, it is possible that some
blocks with high PoW targets (easier to fulfill) are ful-
filled but others are not. Batch-chaining-blocks for these
fulfilled zones will be composed and sent to their zones
immediately, regardless PoW targets of other zones are
not fulfilled (thus not be sent out). The fulfilled blocks in
the list of chaining-headers (Equation 4) will be removed
and replaced with their successive candidate blocks. The
probing of the batch PoW nonce will switch to a new
puzzle with updated h0 in Equation 3. Since the event of
finding a fulfilled nonce in different zones is independent
and random, such switching will not reduce the mining
efficiency.

5.3 Redistributed Mining Power

This section explains why Chu-ko-nu mining can make
an attack on a single zone as hard as the attack on the
entire network, which can set the attack bar at the same
security level of Bitcoin and Ethereum.

Mining Coordinator

       Zone 0Full Node

       Zone 1Full Node
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…
 …
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Figure 5: Internal architecture of a mining system

We use hash rate to describe the mining power, which
is proportional to the speed of producing new blocks. In
a network having 2k zones, let mp be the total physical
hash rate of miners that participate in Chu-ko-nu min-
ing and md be the total physical hash rate of miners that
don’t (as individual miners). The effective hash rate ms
distributed in each zone can be calculated as

ms =
md

2k +mp. (5)

If a malicious node can obtain > ms
2 hash rate in any

zone, it can control this zone. Therefore, the attack bar in
each zone, which can be calculated as the obtained hash
rate of a malicious node divided by the total hash rate in
the network, is

>
ms

2 · (md +mp)
= 50%− md · (2k−1)/2k

2 · (mp +md)
(6)

, which converges to 50% when the mining facility dom-
inates the total hash rate. For example, if the mining fa-
cility contributes 99% hash rate in a 256-zone network,
a successful attack requires 49.5% of total physical hash
rate in the network. The current situation (September
2018) in Bitcoin network, 100% hash rate is contributed
by mining facilities[5].

To maximize the incentive from a single PoW solu-
tion, professional mining facilities will participate in all
zones and hopefully takes rewards from all zones. Chu-
ko-nu mining actually amplifies miner’s mining power,
which is multiplied with the number of zones a miner
participates in. The amplified mining power is evenly
distributed to all involved zones. Such an effective am-
plification of mining power helps honest miners that dis-
tribute mining power to all zones but don’t apply to at-
tackers targeting on a single specific zone.

5.4 Scalable Mining System
A mining system of Bitcoin or Ethereum in a mining fa-
cility is a distributed system that consists of hundreds or
even thousands PoW mining units, e.g,. GPU and Spe-
cialized Application-Specific Integrated Circuit (ASIC)
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just focusing on hash probing, plus a few PCs working
on actual transaction validation and block construction.

In our system, a mining system is desired to monitor
multiple zones. The partitioning scheme in the network
naturally provides a scalable solution for a mining facil-
ity observing a large number of zones. As illustrated in
Figure 5, besides the cluster of PoW mining units, in ad-
dition, there is a cluster of full nodes for observing all
involved zones, independently discovering new blocks,
validating transaction, and constructing candidate block-
headers Ai. Once Ai is updated in any zone i, new Ai
will be sent to Mining Coordinator in Figure 5. Merkle
tree of block-header list (Equation 4) will be recalculated
by the mining coordinator and the updated Merkle tree
root h0 (Equation 3) will be broadcast to all PoW mining
units. Such design provides an example and demonstrate
how a scalable mining system can be implemented and
operated for professional mining facility.

6 Discussions

6.1 Single Address Hotspot
It is possible that a single address is involved
in a great number of transactions, e.g., a deposit
address of a large cryptocurrency exchange. In
the workload described in Section 7, the address
0x3f5CE5FBFe3E9af3971dD833D26bA9b5C936f0bE, which is
one deposit address of Binance (a top cryptocurrency ex-
change), is the payee of more than 2% total transactions.
Since a single address is the finest unit in our partitioning
scheme, right now our system can not further partition
such workload into multiple zones.

In practice, such a "single address hotspot" issue can
be easily resolved with the co-design of applications at
the upper layer. For example, an application or a user
can allocate multiple deposit addresses in different zones
for load balancing. An institutional operator announces
a list of addresses for deposit, and the wallet applica-
tion automatically chooses a random address, or even an
intra-zone address if available, for coin transferring. As
a result, the transaction throughput of multiple zones can
be leveraged.

6.2 Incentives and Fees
We follow Bitcoin’s incentive model by rewarding the
miners with phase down coinbase in every zone, which
end up with a fixed total supply of cryptocurrency. The
transaction fee is a parameter set by whoever issue
the transaction, which is usually based on the average
amount of the fee in recent confirmed transactions. A ra-
tional miner prioritizes unconfirmed transactions based
on the transaction fee.

We introduce fee splitting for cross-zone transactions,
which incentivize both miners working on initial step and
relayed step of transaction handling so that relayed trans-
actions will be equally prioritized with transaction fees
at similar levels. For a simple payment, the transaction
fee can be equally split. For complex transaction with
programmable transaction logic, the transaction splitting
should be based on the evaluation of workloads in each
step similar to the gas calculation in Ethereum.

We don’t introduce additional fees for propagating
cross-zone transactions. Optimistically, we expect such
task will be done voluntarily by all full nodes and min-
ers throughout the network as voluntarily propagating
of intra-zone transactions works well in Bitcoin and
Ethereum networks. Block creation with cross-zone
transactions is a bit more costly than intra-zone transac-
tions. We recommend cross-zone transaction issuer set
double or even triple the amount of transaction fees.

We encourage Chu-ko-nu mining by providing equal
coinbase reward for blocks generated using Chu-ko-nu
or not. Thus, given fixed physical mining power, the
profit of Chu-ko-nu mining is proportional to the number
of zones participating. It is rational for professionally-
operated miners to work on all zones simultaneously,
which enhances the overall security of the network.

We do not extend to the quantitative analysis on the in-
centives and economics of the ecosystem, as it is beyond
the scope of this paper.

6.3 Generalization beyond Payment

So far, our discussions are based on the withdraw-deposit
paradigm that serves well payment-centric scenarios,
e.g., Bitcoin. It is also desirable to extend the model
for complex transaction logic and go beyond payment-
centric applications. To this end, a main challenge is
to correctly handle generalized relay transactions, and
guarantee the atomicity. We extend the withdraw-deposit
paradigm to a more general model with programmable
transaction logic, which is presented in the appendix.

The proposed programmable transaction logic sup-
ports programmable issuing and transferring of cryp-
tocurrencies as well as user-defined fungible and non-
fungible tokens similar to ERC20/ERC721 tokens on
Ethereum. It also supports more complicated applica-
tions like a domain registration system. Our method re-
quires that a cross-zone transaction can be verified in a
single zone and be completed by one-step irrevocable
relay transactions, which don’t support applications like
many-to-many payments. It can be extended to revoca-
ble relay transactions and multi-step relaying, we leave
those improvements to future works.
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7 Experimental Results

Our system is implemented using C++. Cryptography
is implemented based on Botan cryptography library
(v1.11) [30] and Intel IPP Cryptography library (v7.1)
[21]. We use RocksDB (v4.11) [16] to store archived
blocks and transactions. We implement Mainline DHT
[31] for P2P routing and swarm formation facilities peer
discovery for the global swarm and per-zone swarms.

We evaluate the proposed system by playing back the
complete historical ERC20 payments in Ethereum from
the beginning up to the block height 5867279, which in-
cludes 16.5 million unique addresses and 75.8 million
transactions. We deploy our system on a distributed en-
vironment that includes 1,200 virtual machines, each of
which has 8 cores and 32GB memory. These machines
are uniformly distributed in 15 Availability Zones for
testing cross-country latency in the real world. In the
test network, we restrict the end-to-end peek bandwidth
to 30Mbps and the measured average end-to-end latency
is 102.48 msec. In every zone, we set a 32KB limit for
the block size and a target of 15-second block creation
interval, which yields around 15.6 TPS for one-to-one
token transfer. The average orphan rate in every zone is
8.3o/oo, which is independent of the number of zones. On
such a testbed, we support 48,000 nodes of blockchain in
our system.
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Figure 6: Linear scaling out with multiple zones.

7.1 Scalability

We first evaluate if our partitioning mechanism intro-
duced in Section 3.1 can balance the number of payments
between zones. We change the sharding scale k to gen-
erate different numbers of zones, i.e., setting k to 4, 5, 8
and getting 16, 32, 256 zones, respectively. Figure 7 il-
lustrates transactions handled in each zone are balanced,
with different sharding scale k. While, there exist sin-
gle address hotspots, which can be further optimized as
discussed in Section 6.1.

We evaluate the scalability by measuring the actual
throughput of our system with a different number of
zones. We fix the number of nodes in each zone, i.e., 24
nodes with 12 miners in average per zone, when increas-
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Figure 7: Transaction distribution across zones.

ing the number of zones. Figure 6 shows that the mea-
sured TPS scales out as the number of zones increase.
The system exhibits the linear scalability, and achieves
up to 11,694.89 TPS when there are 2,048 zones. The
only exception occurs when increasing the number of
zones from one to two. Due to the overhead of relay-
ing transactions, the performance gain using two zones
over one zone is 1.88×.

7.2 Overhead

Although the throughput of our system scales out linearly
with the number of zones, relaying transactions across
zones actually introduces the overhead, amplifying the
number of transactions and total size of data to be stored
and replicated. Figure 8 shows the percentage of cross-
zone transactions grows when increasing the number of
zones. Almost all transactions will lead to a relay trans-
action when there are more than 64 zones in our exper-
iments. Such an amplification doubles the total number
of transactions at most and don’t weaken the scalability
of throughput at all. As shown in Figure 6, throughput
keep scaling out when there are more than 64 zones.

Figure 9 illustrates the amplified sizes of data repli-
cation and storage in the entire network. First, when
increasing the number of zones, almost all transactions
lead to a relay transaction, i.e., more than 64 zones in
this case. Transactions are put into blocks and persistent
storage in original zones; and relay transactions are those
of destination zones, doubling the size of transaction-
blocks. Second, compared to the transactions in a block,
which takes hundreds of kilo-bytes, the chaining-block
that has tens of bytes is much less significant. However,
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Figure 8: Percentage of cross-zone transactions, which
approaches to 100%. Almost every original transaction
produced a relay transaction.
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Figure 9: Sizes of the blockchain data in the entire net-
work.

since the chaining-block is duplicated to all zones, their
total size on storage in the entire network will be ampli-
fied with the number of zones. As shown in the figure,
their total size is pushed up to tens of kilo-bytes with
2048 zones, 6.2% of the transaction size, which is ac-
ceptable in practice.

7.3 Confirmation Latency
The average number of connections per node affects the
data propagation speed in the network, and in turn, the
confirmation latency of blockchain. Figure 10 shows
the cumulative distribution function of time elapsed and
number of nodes reached. We configure the average
number of connections per node to 16, 32, 64, 128, and
observe that the fastest propagation speed is obtained at
128. In our experiments, each full node connects to 68.5
peers in average.

As presented in Section 4.2, a transaction is first con-
firmed when its block is replicated between nodes in the
network; after n block, the transaction is secured. Bit-
coin, which configures n to 6 with a 10-minute interval of
block generation, requires 1 hour to secure a transaction.
In our system, a relay transaction must be on-chain be-
fore the original transaction reaches n-confirms, so there
is no additional confirmation latency. Figure 11 shows
the first confirmation time of relay transactions. The la-
tency is in a range of 13 to 21 seconds, when the number
of zones is larger than 30 (almost all transactions have
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Figure 10: Transaction (<1KB) propagation speed with
different average number of connections from each node
to other peers. Fastest propagation shown here is 128-
connected, slowest one is 8-connected. Ones in between
are 64/32/16-connected.
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Figure 11: Average first confirming time of transactions.

relay transactions). Since we configure a 15-second in-
terval of block generation, the original transaction is se-
cured after 90 seconds (n = 6, same to Bitcoin), which is
enough to cover the confirmation latency of relay trans-
actions.

7.4 Throughput and Orphan Rate

We also evaluate the TPS and orphan rate of our system
with different block sizes and block creation interval in
Figure 12. In these experiments, we fix the number of
zones to 256. As expected, enlarging block size or less-
ening block creation interval yields almost linear TPS in
our system, since our system is neutral to actual config-
urations of Nakamoto consensus instances in each zone.
However, a larger block size or a smaller block creation
interval leads to a higher orphan rate, inducing blocks
wasted. Such behavior matches well with the existing
blockchain system. In a typical case, we configure a rea-
sonable block size and a block creation interval, e.g., 32
KB and 15 seconds, for high TPS and low orphan rate.
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Figure 12: TPS and orphan rate with different block
sizes (Upper) and with different block creation interval
(Lower). (# zone = 256)
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8 Related Work

Many research efforts have been put on improving PoW
systems. Instead of the longest branch, GHOST proto-
col [42] chooses the block whose sub-tree contains most
blocks as the main chain to prevent the attack by selfish
mining at a fork. Bitcoin-NG [15] selects a leader in each
epoch, and allows the leader to post multiple blocks, thus
increasing the throughput. SPECTRE [41] and PHAN-
TOM [43] increase Bitcoin’s throughput by replacing
the chain-based structure to the Directed Acyclic Graph
(DAG)-based structure and merging blocks from differ-
ent branches to the ledger. SPECTRE provides the partial
order between DAG blocks, while PHANTOM can keep
the total order. Conflux [29] is another DAG-based pro-
tocol. It constructs the consistent total order of transac-
tions over DAG through introducing parent and reference
edges and combining ghost for pivot chain selection. It
allows blocks outside the pivot chain to be able to con-
tribute to the overall throughput. These proposals can en-
hance Bitcoin security by eliminating the selfish mining
and improve the throughput by merging blocks from dif-
ferent branches to the main chain. However, as discussed
in Section 1, the performance of these single chain sys-
tems is bound to the available network bandwidth of full
nodes. Thus, they cannot scale out to thousands of nodes.
Moreover, due to the requirement of replicating and pro-
cessing forked blocks in these systems, it is unclear how
full nodes address and resolve the capacity issue on the
memory and storage in a large scale.

PoS systems reach the consensus with the majority of
stake share. Ouroboros [22] is a PoS system with en-
hanced persistence and liveness. It uses a coin-flipping
protocol to produce the randomness in the leader elec-
tion. However, it cannot avoid the targeted attack [18]
with the assumption that most leaders are incorruptible
in an epoch. Tendermint [26] and Casper the Friendly
Finality Gadget [7] adopt the Byzantine Fault Tolerance
(BFT) protocol to select the committees, reach the con-
sensus, and tolerant against up to one third malicious
nodes. However, Practical BFT (PBFT) protocol [8, 40]
used in these proposals has significant communication
cost and only scales to dozens of compute nodes. Fur-
thermore, on a public blockchain that anyone can partici-
pate in, PBFT has the security issues. The permissionless
characteristics of PBFT makes the blockchain under the
risk of Sybil attack [13], where an adversary can create
an arbitrary number of pseudonyms. And, the absence
of public-verifiable and unbiased randomness makes the
elected committees under the risk of targeted attack [18],
once an adversary can predict their identities.

The recent work [1] has discussed the relation-
ship between BFT protocols and blockchain consensus,
and highlighted how to optimize BFT for blockchain.

Zyzzyva [25] uses speculation to simplify BFT state ma-
chine replication and can reduce replication overhead
significantly. SBFT [19] is a scalable, trust, and decen-
tralized infrastructure of blockchain. It can handle hun-
dreds of active replicas and support smart contracts of
Ethereum. HoneyBadgerBFT [35] proposes an atomic
broadcast protocol to optimize the communication com-
plexity of BFT, making the asynchronous BFT to be able
to support hundreds of nodes. ByzCoin [24] leverages
the collective signing and optimizes the transaction com-
mitment of the BFT-based blockchain. RandHound and
RandHerd [45] provide public-verifiable, unpredictable,
and unbiased randomness. Algorand [18] grows the
blockchain in asynchronous rounds. In a round, each
node computes a verifiable random function to determine
if it is a committee member. Once a validator sends a
message to prove its membership with its vote, Algorand
replaces participants immediately. It can avoid the Sybil
attack and targeted attack. However, these proposals are
reported to have either the security issue or the perfor-
mance issue. For example, Algorand is susceptible to
bias in the randomness of the variable random function
(VRF) invocation [20], while ByzCoin may not reach the
agreement on the committee election, as reported in the
hybrid consensus system [38].

Many distributed systems, e.g., Google Spanner [9]
and Slicer [2], use the sharding protocols to scale out;
while these solutions are centralized and cannot be used
directly in the decentralized blockchain systems. Elas-
tico [32] is a decentralized sharding protocol. In each
consensus epoch, the participants can solve a PoW puz-
zle to join a consensus committee. The committee of
each shard runs PBFT to reach the agreement on a set of
transactions and sends the agreement to a final commit-
tee. The final committee generates the final values from
the received agreements, and broadcasts to the network.
First, Elastico doesn’t ensure the transaction atomicity
across shards. Second, in order to limit the overhead of
running PBFT, it only supports a small number of com-
mittees, leading to a high failure probability [23]. Third,
although each committee can verify transactions in their
own shard, Elastico still broadcasts all blocks to all nodes
and requires them to store the whole ledger. This leads to
the capacity issue on full nodes inevitably. OmniLedger
[23] is a distributed ledger based on a sharding proto-
col and tries to resolve the problems in Elastico. Om-
niLedger uses RandHoundm [45] to ensure the leader
election bias-resistant and public-verifiable, and intro-
duces Atomix, a two-phase atomic commit protocol, to
guarantee the atomicity of cross-shard transactions. It
only requires the validators to store the reference point
of each shard, instead of the full transaction history, mak-
ing full nodes more sustainable. The Ethereum commu-
nity also introduces the beacon chain [14] to support the
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sharding protocol. The beacon chain provides the dis-
tributed pseudorandomness for selecting committees of
validators on each shard. Because the pseudorandomness
randomness is susceptible to bias, the sharding-protocol
based blockchain shouldn’t assume a trusted randomness
beacon. A recent study RapidChain [47] further opti-
mizes these sharding protocols. It is resilient to Byzan-
tine faults from up to a 1/4 fraction, e.g., in OmniLedger,
to a 1/3 fraction of the participants. It also enhances the
throughput via block pipelining and ensures the robust-
ness of the setup for new participants to join the network.
Compared to these systems, our work proposes the even-
tual atomicity to ensure the atomicity of cross-zone trans-
actions without the lock/unlock overhead. Most impor-
tantly, a blockchain system that is partitioned to multiple
zones/shards exposes a severe security problem, which is
not addressed in these existing proposals. With partition-
ing, the honest majority of mining power or stake share
or randomly selected committee is dispersed into indi-
vidual zones/shards. This significantly reduces the size
of honest majority on each zone/shard, thus dramatically
lowering the attack bar on a specific zone/shard. There-
fore, we introduce the Chu-ko-nu mining to ensure the
security after partitioning, and make attacking any spe-
cific zone as difficultly as attacking the entire network.

In summary, the existing proposals targeting on the
single chain and non-sharding solution [42, 41, 43, 15,
29, 24, 18] are bound to the network bandwidth and can-
not scale out; while the sharding systems either do not
support full sharding [32], or may lower the attack bar
after sharding [23, 47]. To our best knowledge, Monox-
ide is the only scalable blockchain system implementing
full sharding of the consensus protocol as well as the re-
source usage for scalability, preserving the guarantees of
PoW for decentralization, and maintaining the same level
of security of Bitcoin and Ethereum.

9 Conclusion

We proposed a scalable decentralized consensus system
based on the blockchain mechanism. Without weaken-
ing decentralization and security, our technique offers a
linear scale-out by partitioning the workload of all key
components of a blockchain system including transaction
broadcasting, mining competition, chain storage, trans-
action execution and state representation. We preserved
the simplicity of the blockchain system and amplify its
capacity by duplicating equal and asynchronous zones,
which work independently with minimal coordination,
in parallel. Additionally, Chu-ko-nu mining and even-
tual atomicity are key contributions proposed by our sys-
tem, ensuring the efficiency and security of systems with
thousands of independent zones. In our experiment, we
demonstrate that our system delivers 1,000× throughput

and 2,000× capacity over Bitcoin and Ethereum.
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Appendix

A Programmable Transaction

In Section 3, our discussions are based on a withdraw-
deposit paradigm that serves well for payment-centric
applications such as Bitcoin. However, it is desirable to
have a transaction logic that is more complex and goes
beyond payment-centric applications. To this end, the
proposed system is required to correctly handle (gener-
alized) relay transactions and guarantee eventual atomic-
ity. We extend the withdraw-deposit paradigm to a more
general model with programmable transactions logic.

A.1 World State

We extend per-user balance to per-user state with user-
customizable data types and structures. The world state
Ω only contains per-user states:

Ω :=
{

ψµi

}
, (7)

where µi donates a user identified by its address. Each
per-user state ψ? can be simple integers (that describe ac-
count balance) or be arbitrarily complex data structures
like strings, lists, sets or maps.

A.2 Transaction
We extend the fixed logic of withdraw and deposit to pro-
grammable logic with a few restrictions as follows. A
transaction ϕ is an atomic updates over the state of users.
It modifies states of one or multiple users with a condi-
tion ρ:

ϕ :=
〈
ρ
(
ψµc

)
,
{

ψµi ← φi(ψµi ;ψµc)
}
,κ

〉
, (8)

where κ is the argument of the transaction available to
condition and operation logic, ρ denotes the condition
for validating the transaction (a binary function of state
ψµc ). {φi} contains operations that modify states of users
{ψµi} if ρ is true. Note that we restrict the condition ρ

to only be related to a single user µc, so that a transac-
tion can be validated solely in the user µc’s zone. If the
condition ρ is true, all operations in {φi} are required
to be executed successfully without failure or throwing
exceptions. Each operation φi may have arbitrarily com-
plex logic but restricted access pattern. Specifically, φi
updates the state ψµi only with access to the previous
state of ψµi and readonly access to ψµc which is involved
in the condition ρ (and nothing else). Modifying ψµc is
allowed if µc ∈ {µi}, which is a frequent case.

A.3 Operation
When a transaction is validated (i.e., ρ is true), oper-
ations {φi} modifying cross-zone users’ states will be
carried by relay transactions and executed in an asyn-
chronous manner. As described in Section 4, relay trans-
actions from different originate transactions might be in-
terleaved and disordered during execution. To ensures a
consistent end result without requiring serialization, we
restrict all operations {φi} to be order-independent with
any arguments κa and κb:

∀κa,κb : φi (φi (ψi;κa) ;κb)≡ φi (φi (ψi;κb) ;κa) . (9)

A.4 Smart Asset
The pre-user state ψµi in our system includes the balance
of the native fungible token and a dictionary of states of
the smart asset defined by all 3rd-parties.

ψµi :=
〈
γ,{υ → ψ̂µi}

〉
(10)

Native fungible token is the platform currency like
Ether in Ethereum, which is consumed in the transaction
handling as gas fee. It is issued as the coinbase reward
when a miner find a new block. Smart asset are concep-
tually borrowed from smart contract in Ethereum.

The definition of a smart asset for standard tokens in-
cludes an issuing transaction ϕ̌ and a payment transac-
tion ϕ as in the equation (8). Issuing transaction ϕ̌ is
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designed for extending the coinbase logic for rewarding
miners. It defines the 3rd-party mineable token. More
types of transaction can be defined and invoked when is-
sue a transaction.

Fungible Token

The state of a fungible token is a signed big integer repre-
senting the balance ψ̂µ := βµ . An example of bitcoin-like
issuing transaction can be:

βµm ← βµm +

⌊
50/n

2bhb/210000c

⌋
, hb > 0 (11)

, in which n is the number of zones, µm denotes the miner
and hb is the asset block height, the number of block ap-
pended since the block for deploying the specific smart
asset.

Issuing transaction will also be invoked when it is de-
ployed with hb. For a pre-allocated 1 billion token, it can
be:

βµm ← b1000000000/nc, hb = 0 (12)

Usually issuing transaction contains one unconditional
operation and can be extended to multiple ones (e.g.
given additional reward to certain users).

Payment transaction from µa to µb consists of a con-
dition ρ and multiple operations:

ρ : (κv ≤ βµa)∧ (κe ≤ γµa) (13)
{φi} : βµa ← βµa −κv (14)

γµa ← γµa −κe (15)
βµb ← βµb +κv, (16)
γµm ← γµm +κe (17)

, in which κv is a positive big integer indicating the
amount of the transfer and κe is a non-negative big in-
teger denoting the transaction fee charged from the plat-
form currency.

Non-Fungible Token

The state of a non-fungible token is an set, ψ̂µ := {τi} in-
dicates the ownership of each non-fungible token. Non-
fungible tokens usually don’t need any issuing transac-
tion, which can not be mined.

Payment transaction from µa to µb consists of a con-
dition ρ and multiple operations:

ρ : (κτ ∈ ψ̂µa)∧ (κe ≤ γµa) (18)
{φi} : ψ̂µa ← ψ̂µa −{κτ} (19)

γµa ← γµa −κe (20)
ψ̂µb ← ψ̂µb ∪{κτ} (21)
γµm ← γµm +κe (22)

, in which κτ is the non-fungible token to be transferred.
A customized transaction can be defined and allow in-

vocation only by a hard-coded issuer µu (e.g., the game
developer [10]). The example issues and releases a non-
fungible token κτ to a specific user κµ .

ρ : (µa = µu)∧ (κe ≤ γµu) (23)
{φi} : γµu ← γµu −κe (24)

ψ̂µ ← ψ̂µ ∪{κτ} (25)
γµm ← γµm +κe (26)
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